Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Biosensors (Basel) ; 11(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2215575

RESUMEN

Worldwide infection disease due to SARS-CoV-2 is tremendously affecting our daily lives. High-throughput detection methods for nucleic acids are emergently desired. Here, we show high-sensitivity and high-throughput metasurface fluorescence biosensors that are applicable for nucleic acid targets. The all-dielectric metasurface biosensors comprise silicon-on-insulator nanorod array and have prominent electromagnetic resonances enhancing fluorescence emission. For proof-of-concept experiment on the metasurface biosensors, we have conducted fluorescence detection of single-strand oligoDNAs, which model the partial sequences of SARS-CoV-2 RNA indicated by national infection institutes, and succeeded in the high-throughput detection at low concentrations on the order of 100 amol/mL without any amplification technique. As a direct detection method, the metasurface fluorescence biosensors exhibit high performance.


Asunto(s)
Técnicas Biosensibles/métodos , Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , Sensibilidad y Especificidad
2.
Biosensors (Basel) ; 12(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2109935

RESUMEN

Worldwide infection due to SARS-CoV-2 revealed that short-time and extremely high-sensitivity detection of nucleic acids is a crucial technique for human beings. Polymerase chain reactions have been mainly used for the SARS-CoV-2 detection over the years. However, an advancement in quantification of the detection and shortening runtime is important for present and future use. Here, we report a rapid detection scheme that is a combination of nucleic acid amplification and a highly efficient fluorescence biosensor, that is, a metasurface biosensor composed of a pair of an all-dielectric metasurface and a microfluidic transparent chip. In the present scheme, we show a series of proof-of-concept experimental results that the metasurface biosensors detected amplicons originating from attomolar SARS-CoV-2 nucleic acids and that the amplification was implemented within 1 h. Furthermore, this detection capability substantially satisfies an official requirement of 100 RNA copies/140 µL, which is a criterion for the reliable infection tests.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos
3.
Biosensors (Basel) ; 12(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2099354

RESUMEN

COVID-19 (or SARS-CoV-2) has deeply affected human beings worldwide for over two years, and its flexible mutations indicate the unlikeliness of its termination in a short time. Therefore, it is important to develop a quantitative platform for direct COVID-19 detection and human status monitoring. Such a platform should be simpler than nucleic acid amplification techniques such as polymerase chain reaction, and more reliable than the disposable test kits that are based on immunochromatography. To fulfill these requirements, we conducted proof-of-concept experiments for the quantitative detection of spike glycoprotein peptides and antibodies in one platform, i.e., all-dielectric metasurface fluorescence (FL) sensors. The high capability to enhance FL intensity enabled us to quantitatively measure the glycoproteins and antibodies more efficiently compared with the previous methods reported to date. Furthermore, the intrinsic limit of detection in the metasurface FL sensors was examined via confocal microscopy and found to be less than 0.64 pg/mL for glycoprotein peptides. Moreover, the sensors had a dynamic range more than five orders that of the target concentrations, indicating extremely high sensitivity. These two-way functions of the metasurface FL sensors can be helpful in reducing daily loads in clinics and in providing quantitative test values for proper diagnosis and cures.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales
4.
Biosens Bioelectron ; 190: 113423, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1267612

RESUMEN

We demonstrate highly sensitive fluorescence (FL) biosensors made of plasmon-photon-hybrid high-emittance metasurfaces, which are hybrid structures composed of perforated silicon waveguides and stacked complementary (SC) gold nanostructures. The SC metasurfaces are applicable to a wide range of targets from antibodies to nucleic acids. As a test bed, a representative antibody of immunoglobulin G is immobilized on the metasurfaces through microfluidic paths and then is directly detected in a scaled manner even at a very low concentration of 5 pg mL-1, i.e., 34 fM. Moreover, a cancer marker of p53 antibody is indirectly detected on the SC metasurfaces at a low concentration of 50 pg mL-1, which is significantly lower than the medical diagnosis criterion of a few ng mL-1. Furthermore, single-strand DNAs that are oligonucleotides and complementary to SARS-CoV-2 RNA are detected with 1 h immobilization time in the range of fmol mL-1 in a scaled manner. These experimental results indicate that the present FL metasurface sensors function efficiently as biosensors for a wide range of biomarkers.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Oro , Humanos , ARN Viral , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA